Beltrami operators and their application to constrained diffusion in Beltrami fields
نویسندگان
چکیده
منابع مشابه
Discrete Laplace-Beltrami operators and their convergence
The convergence property of the discrete Laplace–Beltrami operators is the foundation of convergence analysis of the numerical simulation process of some geometric partial differential equations which involve the operator. In this paper we propose several simple discretization schemes of Laplace–Beltrami operators over triangulated surfaces. Convergence results for these discrete Laplace–Beltra...
متن کاملComputing Beltrami Fields
Abstract. For solving the non-linear equations governing force-free fields, an iterative methodology based on the splitting of the problem is described. On the basis of this splitting, three families of subproblems have to be solved numerically. The first problem consists to find a potential field. A mixed hybrid method is used to solve it. The second problem, which is a curl-div system, is sol...
متن کاملBeltrami Operators in the Plane
We determine optimal L-properties for the solutions of the general nonlinear elliptic system in the plane of the form fz = H(z, fz), h ∈ L(C), where H is a measurable function satisfying |H(z,w1) − H(z,w2)| ≤ k|w1 − w2| and k is a constant k < 1. We also establish the precise invertibility and spectral properties in L(C) for the operators I − T μ, I − μT, and T − μ, where T is the Beurling tran...
متن کاملTight Beltrami fields with symmetry.
Tight Beltrami fields with symmetry. Abstract Given a Seifered fibred 3-manifold M equipped with an S 1-invariant contact form α, we provide a bound on the volume Vol(M) and the curvature, in a suitable adapted Riemannian metric to α, which implies universal tightness of the contact structure ξ = ker α.
متن کاملConvergent discrete Laplace-Beltrami operators over surfaces
The convergence problem of the Laplace-Beltrami operators plays an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve the operator. In this note we present a new effective and convergent algorithm to compute discrete Laplace-Beltrami operators acting on functions over surfaces. We prove a convergence t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2019
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/ab1cdc